Some identities for generalized Fibonacci and Lucas numbers
نویسندگان
چکیده
منابع مشابه
Some Identities for Generalized Fibonacci and Lucas Sequences
In this study, we define a generalization of Lucas sequence {pn}. Then we obtain Binet formula of sequence {pn} . Also, we investigate relationships between generalized Fibonacci and Lucas sequences.
متن کاملSome Trigonometric Identities Involving Fibonacci and Lucas Numbers
In this paper, using the number of spanning trees in some classes of graphs, we prove the identities: Fn = 2n−1 n √
متن کاملCombinatorial Proofs of Some Identities for the Fibonacci and Lucas Numbers
We study the previously introduced bracketed tiling construction and obtain direct proofs of some identities for the Fibonacci and Lucas numbers. By adding a new type of tile we call a superdomino to this construction, we obtain combinatorial proofs of some formulas for the Fibonacci and Lucas polynomials, which we were unable to find in the literature. Special cases of these formulas occur in ...
متن کاملNew Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers
In this paper, we consider a generalized Catalan triangle de ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AKCE International Journal of Graphs and Combinatorics
سال: 2020
ISSN: 0972-8600,2543-3474
DOI: 10.1016/j.akcej.2019.06.007